Limits2004 Argonne, 26-30, July, 2004

Evolution of Single-Particle Structure and Nuclear Force

Takaharu Otsuka Tokyo University of

Single-particle (or shell) structure is the basis of many nuclear properties such as (sub)magic number, deformation, and even the existence of the nucleus.

The single-particle levels in exotic nuclei can be different from those of stable nuclei due to the following aspects:

Loose binding

Neutron skin

NN interaction, particularly, spin-isospin interactions (also in nuclei not very close to drip lines)

Major subject:

Such shell evolution due to

tensor and 2-body LS interactions

Tensor Interaction

 π meson: dominant source

ρ meson (~ π + π): minor cancellation for smaller r

Important for binding *e.g.* B.S. Pudliner et al., Phys. Rev. **C**56, 1720 (1997)

Has never shown up directly (or in the first order) in nuclear spectroscopy (e.g. levels, etc)

second-order effect on spin-orbit splitting

T. Terasawa, Prog. Theor. Phys. 23, 87 (1960);

A. Arima and T. Terasawa, Prog. Theor. Phys. 23, 87 (1960)

Effective single particle energy

Monopole part of the NN interaction

$$V_{ab}^{T} = \frac{\sum_{J} (2J+1) V_{abab}^{JT}}{\sum_{J} (2J+1)}$$

Angular averaged interaction

spherical single particle energies

Effective single-particle energy (ESPE)

Shift of single-particle energies due to interaction with other valence nucleons

Identity

$$(2j_>+1) v_{m,T}^{(j'j_>)} + (2j_<+1) v_{m,T}^{(j'j_<)} = 0$$

 $v_{m,T}$: monopole strength for isospin T

Intuitive Picture

wave function of relative motion

† †

spin of nucleon

large relative momentum

small relative momentum

deuteron □ attractive

j, j'

repulsive

Effect sizable for (i) same I or (ii) large I and I'

Tensor potential

tensor

no s-wave to s-wave coupling

differences in short distance: irrelevant

Proton effective single-particle levels (relative to $d_{3/2}$)

Systematic variation of proton effective single-particle energies due to the tensor interaction ($\pi + \rho$ meson) calculation only

Systematic variation of neutron effective single-particle energies due to the tensor interaction (π + ρ meson)

Exp. data from J.P. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004) Also, C. Baktash, Paestum talk.

How the tensor interaction is included in effective shell model interaction?

pf shell: GXPF1

M. Honma et al., PRC65 (2002) 061301(R)

G-matrix + polarization correction | + empirical refinement

- Modify realistic G interaction
 - M. Hjorth-Jensen, et al., Phys. Repts. 261 (1995) 125
 - Bonn-C potential
 - 3rd order Q-box + folded diagram
- Vary 70 well-determined LC's of 195 TBME and 4 SPE
- Fit to 699 experimental energy data of 87 nuclei

Monopole interaction after subtraction of tensor part

Tensor interaction is the primary origin of the p-n $j_>-j_<$ coupling also within a major shell (of a fixed parity).

Implementation of tensor interaction into mean field calculations

Gogny interaction

Tensor interaction is added

All parameters are readjusted

Nuclear matter properties reproduced with improvement of imcompressibility

Gogny-Tokyo interaction - 2 (GT2)

Tensor interaction actually used

Regularized for short distance

Neutron effective single-particle energies of exotic Ni isotopes

Original (D1S)

GT2 (incl. tensor)

Proton effective single-particle energies of exotic Ni isotopes

Original (D1S)

GT2 (incl. tensor)

Summary

Shell evolution due to spin-isospin interactions

Tensor interaction (long range)

drives $j_{>}$ or $j_{<}$ levels in a specific way

This is not necessarily a change of spin-orbit splitting.

is the dominant origin of shell evolution

produces effects of similar magnitude to *neutron skin* (weakening of *ls* splitting)

2-body LS interaction (short range)

special cases (e.g. between s and p) carbon-oxygen $d_{5/2}$ - $s_{1/2}$ inversion (same mechanism as Is splitting)

Structure of exotic nuclei in many respects

observed change of $d_{5/2}$ - $s_{1/2}$: 1.6 MeV

Collaborators

T. Suzuki Nihon U.

R. Fujimoto U. Tokyo

H. Grawe GSI

Y. Akaishi KEK